
XML

Extensible Markup Language (XML) is a markup language that defines a set of rules
for encoding documents in a format that is both human-readable and machine-
readable. The design goals of XML focus on simplicity, generality, and usability
across the Internet. It is a textual data format with strong support via Unicode for
different human languages. Although the design of XML focuses on documents, the
language is widely used for the representation of arbitrary data structures such as
those used in web services.
•XML stands for extensible Markup Language
•XML is a markup language like HTML
•XML is designed to store and transport data
•XML is designed to be self-descriptive

What is mark-up language?
A mark up language is a modern system for highlight or underline a documen

Why xml?
Platform Independent and Language Independent: The main benefit of xml is that you
can use it to take data from a program like Microsoft SQL, convert it into XML then share
that XML with other programs and platforms. You can communicate between two
platforms which are generally very difficult. The main thing which makes XML truly
powerful is its international acceptance. Many corporation use XML interfaces for
databases, programming, office application mobile phones and more. It is due to its
platform independent feature.

https://www.geeksforgeeks.org/html-basics/

What is xml?
•Xml (eXtensible Markup Language) is a mark up language.
•XML is designed to store and transport data.
•Xml was released in late 90’s. it was created to provide an easy
to use and store self describing data.
•XML became a W3C Recommendation on February 10, 1998.
•XML is not a replacement for HTML.
•XML is designed to be self-descriptive.
•XML is designed to carry data, not to display data.
•XML tags are not predefined. You must define your own tags.
•XML is platform independent and language independent.

XML - Syntax
The following diagram depicts the syntax rules to write different types of markup
and text in an XML document

XML Declaration
The XML document can optionally have an XML declaration. It is written as
follows −
<?xml version = "1.0" encoding = "UTF-8"?>
Where version is the XML version and encoding specifies the character
encoding used in the document.

UTF-Unicode Transformation Format
Syntax Rules for XML Declaration
•The XML declaration is case sensitive and must begin with "<?xml>" where "xml" is
written in lower-case.
•If document contains XML declaration, then it strictly needs to be the first statement
of the XML document.
•The XML declaration strictly needs be the first statement in the XML document.
•An HTTP protocol can override the value of encoding that you put in the XML
declaration.

Tags and Elements
An XML file is structured by several XML-elements, also called XML-nodes or XML-
tags. The names of XML-elements are enclosed in triangular brackets < > as shown
below −
<element>

<?xml version = "1.0" encoding = "UTF-8"?>
<note>

<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>

</note>

The XML above is quite self-descriptive:
•It has sender information
•It has receiver information
•It has a heading
•It has a message body

Features and Advantages of XML

1) XML separates data from HTML
If you need to display dynamic data in your HTML document, it will take a lot of work to
edit the HTML each time the data changes.
With XML, data can be stored in separate XML files. This way you can focus on using
HTML/CSS for display and layout, and be sure that changes in the underlying data will
not require any changes to the HTML.

2) XML simplifies data sharing
In the real world, computer systems and databases contain data in incompatible
formats.
XML data is stored in plain text format. This provides a software- and hardware-
independent way of storing data.
This makes it much easier to create data that can be shared by different applications.
3) XML simplifies data transport
One of the most time-consuming challenges for developers is to exchange data between
incompatible systems over the Internet.
Exchanging data as XML greatly reduces this complexity, since the data can be read by
different incompatible applications.

4) XML simplifies Platform change
Upgrading to new systems (hardware or software platforms), is always time consuming.
Large amounts of data must be converted and incompatible data is often lost.
XML data is stored in text format. This makes it easier to expand or upgrade to new
operating systems, new applications, or new browsers, without losing data.

5) XML increases data availability
Different applications can access your data, not only in HTML pages, but also from XML
data sources.
With XML, your data can be available to all kinds of "reading machines" (Handheld
computers, voice machines, news feeds, etc), and make it more available for blind
people, or people with other disabilities.
6) XML can be used to create new internet languages
A lot of new Internet languages are created with XML.
Here are some examples:
XHTML
WSDL (Web Services for Devices) for describing available web services
WAP (wireless application protocol) and WML (Wireless Markup Language)as markup
languages for handheld devices
RSS (really simple syndication) languages for news feeds
RDF(Resource Description Framework) and OWL (Web Ontology Language) for
describing resources and ontology
SMIL (Synchronized Multimedia Integration Language)for describing multimedia for
the web

XML Naming Rules
XML elements must follow these naming rules:
•Element names are case-sensitive
•Element names must start with a letter or underscore
•Element names cannot start with the letters xml (or XML, or Xml, etc)
•Element names can contain letters, digits, hyphens, underscores, and periods
•Element names cannot contain spaces
Any name can be used, no words are reserved (except xml).

Best Naming Practices
Create descriptive names, like this: <person>, <firstname>, <lastname>.
Create short and simple names, like this: <book_title> not like this:
<the_title_of_the_book>.
Avoid "-". If you name something "first-name", some software may think you want to
subtract "name" from "first".
Avoid ".". If you name something "first.name", some software may think that "name"
is a property of the object "first".
Avoid ":". Colons are reserved for namespaces (more later).
Non-English letters like éòá are perfectly legal in XML, but watch out for problems if
your software doesn't support them!

Style Example Description

Lower case <firstname> All letters lower case

Upper case <FIRSTNAME> All letters upper case

Snake case <first_name> Underscore separates
words (commonly
used in SQL databases)

Pascal case <FirstName> Uppercase first letter
in each word
(commonly used by C
programmers)

Camel case <firstName> Uppercase first letter
in each word except
the first (commonly
used in JavaScript)

Naming Conventions
Some commonly used naming conventions for XML
elements:

The Building Blocks of XML Documents
All XML documents are made up by the following building blocks:
•Elements
•Attributes
•Entities
•PCDATA
•CDATA

•Elements
Elements are the main building blocks of both XML and HTML
documents.
Examples of HTML elements are "body" and "table". Examples of XML
elements could be "note" and "message". Elements can contain text,
other elements, or be empty. Examples of empty HTML elements are
"hr", "br" and "img".
Examples:
<body>some text</body>
<message>some text</message>

•Attributes
Attributes provide extra information about elements.
Attributes are always placed inside the opening tag of an element. Attributes
always come in name/value pairs. The following "img" element has additional
information about a source file:

The name of the element is "img". The name of the attribute is "src". The value
of the attribute is "computer.gif". Since the element itself is empty it is closed
by a " /".

Entity References Character

< <

> >

& &

" "

' '

•Entities
Some characters have a special
meaning in XML, like the less than sign
(<) that defines the start of an XML
tag.
Most of you know the HTML entity:
" ". This "no-breaking-space"
entity is used in HTML to insert an
extra space in a document. Entities are
expanded when a document is parsed
by an XML parser.
The entities are predefined in XML
are:

•PCDATA
PCDATA means parsed character data.
Think of character data as the text found between the start tag and the end
tag of an XML element.
PCDATA is text that WILL be parsed by a parser. The text will be examined
by the parser for entities and markup.
Tags inside the text will be treated as markup and entities will be expanded.
However, parsed character data should not contain any &, <, or >
characters; these need to be represented by the & < and >
entities, respectively.

•CDATA
CDATA means character data.
CDATA is text that will NOT be parsed by a parser. Tags inside the text will
NOT be treated as markup and entities will not be expanded.

HTML vs XML

No. HTML XML

1) HTML is used to display data and
focuses on how data looks.

XML is a software and hardware independent
tool used to transport and store data. It
focuses on what data is.

2) HTML is a markup language itself. XML provides a framework to define markup
languages.

3) HTML is not case sensitive. XML is case sensitive.

4) HTML is a presentation language. XML is neither a presentation language nor a
programming language.

5) HTML has its own predefined tags. You can define tags according to your need.

6) In HTML, it is not necessary to use
a closing tag.

XML makes it mandatory to use a closing tag.

7) HTML is static because it is used to
display data.

XML is dynamic because it is used to transport
data.

8) HTML does not preserve
whitespaces.

XML preserve whitespaces.

XML Parser (Reading XML file is called Parsing)

All major browsers have a built-in XML parser to access and manipulate XML.
XML Parser. An XML parser is a software library or package that provides interfaces for
client applications to work with an XML document. The XML Parser is designed to read
the XML and create a way for programs to use XML.
XML parser validates the document and check that the document is well formatted.
The XML DOM (Document Object Model) defines the properties and methods for
accessing and editing XML.
However, before an XML document can be accessed, it must be loaded into an XML
DOM object.
All modern browsers have a built-in XML parser that can convert text into an XML DOM
object.
The working of XML parser by the figure given below:

https://www.w3schools.com/xml/dom_intro.asp

Types of XML Parsers
These are the two main types of XML Parsers:
1. DOM (Tree Based)
2. SAX (Event based)
DOM (Document Object Model)
A DOM document is an object which contains all the information of an XML
document. It is composed like a tree structure. The DOM Parser implements a
DOM API. This API(application programming interface) is very simple to use.
Features of DOM Parser
A DOM Parser creates an internal structure in memory which is a DOM
document object and the client applications get information of the original XML
document by invoking methods on this document object.
DOM Parser has a tree based structure.
Advantages
1) It supports both read and write operations and the API is very simple to use.
2) It is preferred when random access to widely separated parts of a document
is required.
Disadvantages
1) It is memory inefficient. (consumes more memory because the whole XML
document needs to loaded into memory).
2) It is comparatively slower than other parsers.

SAX (Simple API for XML)
A SAX Parser implements SAX API. This API is an event based API and less
intuitive.
Features of SAX Parser
It does not create any internal structure.
Clients does not know what methods to call, they just overrides the methods
of the API and place his own code inside method.
It is an event based parser, it works like an event handler in Java.
Advantages
1) It is simple and memory efficient.
2) It is very fast and works for huge documents.
Disadvantages
1) It is event-based so its API is less intuitive.
2) Clients never know the full information because the data is broken into
pieces.

<!DOCTYPE html>
<html>
<body>
<p id="demo"></p>
<script>
var parser, xmlDoc;
var text = "<bookstore><book>" +
"<title>Web Technology</title>" +
"<author>Balram</author>" + Text string is defined
"<year>2005</year>" +
"</book></bookstore>";
parser = new DOMParser(); XML DOM parser is created
xmlDoc = parser.parseFromString(text,"text/xml"); Parser create anew

 XML DOM object
 using the text string

document.getElementById("demo").innerHTML =
xmlDoc.getElementsByTagName("title")[0].childNodes[0].nodeValue;
</script>
</body>
</html>

Parsing a Text String
This example parses a text string into an XML DOM object,
and extracts the info from it with JavaScript:

XML DTD

What is DTD
DTD stands for Document Type Definition. It defines the legal building
blocks of an XML document. It is used to define document structure with a
list of legal elements and attributes.

Purpose of DTD
Its main purpose is to define the structure of an XML document. It contains
a list of legal elements and define the structure with the help of them.

Checking Validation
Before proceeding with XML DTD, you must check the validation. An XML
document is called "well-formed" if it contains the correct syntax.
A well-formed and valid XML document is one which have been validated
against DTD.

Valid and well-formed XML document with DTD
Let's take an example of well-formed and valid XML document. It follows all the
rules of DTD.
employee.xml

<?xml version="1.0"?>
<!DOCTYPE employee SYSTEM "employee.dtd">
<employee>

<firstname>vimal</firstname>
<lastname>jaiswal</lastname>
<email>vimal@javatpoint.com</email>

</employee>

In the above example, the DOCTYPE declaration refers to an external DTD file. The
content of the file is shown in below paragraph.
employee.dtd
<!ELEMENT employee (firstname,lastname,email)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT email (#PCDATA)>

Description of DTD
<!DOCTYPE employee : It defines that the root element of the document is
employee.
<!ELEMENT employee: It defines that the employee element contains 3 elements
"firstname, lastname and email".
<!ELEMENT firstname: It defines that the firstname element is #PCDATA typed.
(parse-able data type).
<!ELEMENT lastname: It defines that the lastname element is #PCDATA typed.
(parse-able data type).
<!ELEMENT email: It defines that the email element is #PCDATA typed. (parse-able
data type).

XML DTD with entity declaration
A doctype declaration can also define special strings that can be used in the XML
file.
An entity has three parts:
An ampersand (&)
An entity name
A semicolon (;)
Syntax to declare entity:
<!ENTITY entity-name "entity-value">

A code to define the ENTITY in doctype declaration.
author.xml
<?xml version="1.0" standalone="yes" ?>
<!DOCTYPE author [

<!ELEMENT author (#PCDATA)>
<!ENTITY sj "Sonoo Jaiswal">

]>
<author>&sj;</author>

In the above example, sj is an entity that is used inside the author element. In such case,
it will print the value of sj entity that is "Sonoo Jaiswal".

XML CSS
Purpose of CSS in XML
CSS (Cascading Style Sheets) can be used to add style and display information
to an XML document. It can format the whole XML document.
How to link XML file with CSS
To link XML files with CSS, you should use the following syntax:
<?xml-stylesheet type="text/css" href="cssemployee.css"?>
XML CSS Example:
cssemployee.css
employee
{
background-color: pink;
}
firstname,lastname,email
{
font-size:25px;
display:block;
color: blue;
margin-left: 50px;
}

create the DTD file.
employee.dtd
<!ELEMENT employee (firstname,lastname,email)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT email (#PCDATA)>

the xml file using CSS and DTD.
employee.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/css" href="cssemployee.css"?>
<!DOCTYPE employee SYSTEM "employee.dtd">
<employee>
<firstname>vimal</firstname>
<lastname>jaiswal</lastname>
<email>vimal@javatpoint.com</email>

</employee>

	Slide 1: XML
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

